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SECTION I

INThRODUCT ION

In netted air defense and air traffic control systems, data from
i the long range radars are routed to a Sector Operations Center and

stereographically pz. Jected onto a common coordinate plane for presenta-
dLon Lo system operators on the display consoles. In this manner, the

*1. overlap coverage of the radars is exploited and a composite air sur-
veillance ficture is presented.

The prejection of aircraft information from system radars may be1
separated into two parts namely conversion and transiormacioa for
convenience in analysis. The two aspects of the probtem may be
defined as follows:

(a) Conversion of slunt range, azimuth and height data
into rectangul&r coordinates in a plane with the
radar site as origin.

(b) Transformation of these coordinates from the radar
plane into rectangular coordinates in the comon
coordinate plane.

Reference 3 reports on an accurate and simple solution to the
conversion problem. The data of slant range, height and azimuth
angle are stereographically converted to rectangular coordinates in
a plane tangent to the earth at the radar site location. Assuming
tangent planes have been so established at multiple radar sites, it
is desired to transform the coordinates of radar data in the various
radar planes into rectangular coordinates in the common coordinate
plane with accuracy and simplicity. All system computations such as
aircraft tracking, interceptor control and information display are
performed in the common coordinate plAne.

This report focuses on the transformsation aspects of the pro-
jection problem. Its purpose is to supplement Reference 3 and to
derive and develop the stereographic transformation equations more
coupletel3 thau is accomplished in References 1 and 2. In
particular this report:

(a) Derives the stereographic transformation equation

in complex notation.

4 I1 I I i... .i. .



(b) Derives the closcd form solution to the stereo-
graphic transformation equation in terms that
are suitable for real time computation.

I (c) 'Derive3 approximations to the closed form solu-

tion of the stereographic transformation equation
in terms that are suitable for real time computation.

(d) Depicts error curves assot.-ated with the approxima-
1tions to the closed form solution of the stereographic'transformation equation.

(e) Depicts contours of constant distortion induced by
the mapping of points on the surface of the earth
ellipsoid onto the surface of conformal spheres of
varying radii.

(f) Depicts contours of constant distortion induced
by the projection of the surftze of a conformal

Isphere onto a common coordinate plane.

(g) Presents contours of constant distortion induced
Iby the overall projection of points on the sur-

face of the earth ellipsoid onto a common coordi-
nate plane.

(h) Demonstrates how the contours of constant distor-
tion are influenced by the choice of an earth's
radius and recommends a method for determining
an optimum earth radius that minimiz-s the dis-
tortion associated with the overall projection
process.

i) Demonstrates the impact of tue choice of the origin
of the common coordinate system on the distortion
contours.

(j) Summarizes the stereographic ccnvers!on and trans-

formation equations.

2
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Appendix A derives the equation for transforming the coordinates
of data from the plane of the radar site to a coaon coordinate plane

in cotplex notation. This section of the report presents the trans-. formation equation in complex notation, explains the various termus
therein and expresses equation (1) in terms of its real and imginary

components. Because of the computatonal difficulties associated
with calculating aircraft locations in the coon coordinate plane
Svia te derived expression, several approximations that combine sm-
plicity ith accuracy are also presented.

I--!From equation (A-13) of Appendix A, the transformation equation

in complex notation is:

zet i , + W

~Z V e - i"

4E 
2

where:

W - U + iV are the rectangular coordinates of an
aircraft with respect to the coamon coordinate
origin.

Z X + iy are the rectangular coordinates of an- . aircraft with respect to the radar coordinate
: origin.

:": =is a rotation angle which makes the axes of

- the Z and W, the radar and common coordinate
planes more nearly parallel.

: Sr  Ur + iVr are the rectangular coordinates of a
" ' radar ;1th respect to the common coordinate

oriin
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r r iVr is the complex conjugate of W

E - the radius of a spherical earth.

With respect to the components of the W term in equation (1),
the positive U axis is directed toward east and the positive V axis

'1 is directed toward north at the origin of the system. With respect
to the components of the Z term in equation (1), the positive X axis

is directed toward east ard the positive 7 axis is directed toward
north at the origin of the radar coordinate system. The coordinate

axes in the radar coordinate plane are shown in Figure 1.
Given the measured slant range from the radar to an aircraft,

the height of an aircraft above sea level and the elevation of the
radar above sea level, the stereographic ground range R, the dis-
tance from the radar to the aircraft in the radar plane, Is obtained

as described in Reference 3. Having obtained the ground range R,
the rectangular coordinates of the aircraft with respect to the
radar coordinate origin may be expressed as:

Z = Iz~ei[( I2)-e  - Rei[(w/ 2 )-O] - R[Sin 0 + i Cos e1

S- Therefore, the rectangular coordinates of Z may be written as:

x - RSinO

Y - RCos e

where:

R is the projected ground range of the aircraft.

. is the azimuth angle measured clackwise from the
positive Y axis which is oriented toward north
at the location of the radar site.

- The angle B in equation (1) is derived in equation (A-9) of

* Appendix A and depends simply upon the positional coordinates of
the radar site with respect to the origin of the cemon coordinate
plane. These coordinates are defined by their latitudes L and

4
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longitudes A. Latitudes north of the equator are defined as positive
and latitudes south of the equator are defined as negative. Longl-
tudes are defined as positive east of the prime meridian and negative
west of the prime meridian. From equation (A-9), 8, which is a con-
stant for any radar with respect to a particular cornon coordinate
origin, is defined as follows:

(Sin L +Sin Lo ) Sin (Ao-A)

STn Cos L Cos L + (I + Sin L Sin Lo) Cos (-A) (2)

where:

LX are the latitude and longitude of the origin
of the tangent plane at the radar site.

LA are the latitude and longitude of the origin

0 of the common coordinate plane.

The angle 8 may be considered as a rotation of the Z plane with
respect to the W plane. The effect of the rotation, which is
counterclockwise when A < Xo and clockwise when A > Xo, is to make
the axes of the radar plane more nearly parallel to the axes of
the common coordinate plane.

Considering Wr, which represents the coordinates of a radar site
with respect to the common coordinate origin, Appendix B derives the
equations which stereographically map points on the surface of the
earth onto a rectangular coordinate plane for a spherical earth.
These equations are used to project points such as the location of
a radar site onto the comon coordinate plane. From equation (B-5)
of Appendix B, the rectangular coordinates of a radar site located
at latitude L and longitude A with respect to the common coordinate
plane are:

Sin (K-Xo ) Cos L

U -2Er I + Sin L Sin L + Cos L CoS I Cos (N-X )

(3)
Sin L Cos -- Cos L Sin Lb Cos (A-x0)

v 2E
r 1 + gin L Sin i + Cos L Cos 10 Cos (A-)O )

6



wheze

are the latitude and longitude of the radar
site, the coordinates of which are projected
onto the common coordinate plane.

I LoX °  are the letitude and longitude of the origin
0 of the cosson coordinate plane.

U %,V, are the rectangular coordinates of the Doint
designated by L,X in the common coordinate
plane.

Thus far, a brief description of each of the terms in equation (1)
has been presented. Equations for obtaining the rectanSular coordi-
nates of an airca'aft in a plane tangent to the earth at the location
of a radar site have been presented. Assuming a common coordinate
tangent plane has been established at a location different from the
radar site, results have been derived for the rotation angle B which
make the axes of the radar plane more nearly parallel to those of
the common coordinate plane. Additionally, equations have been
derived which project the earth coordinates of a radar onto a point
in the common coordinate plane. It is now desired to employ this
information in expressing equation (I) in terms of its real and
imaginary componentq.

CLOSED FORM TRANSFORMATION EQUATION

Equatiun (1) is the complex representation of an aircraft's pooi-
I tion in the common coordinate plane. Expressing the numerator of this

equation in terms of R, 8, 6 and IWrI, we note that:

Ze (X + iY)(Cos B -iSin 8) - (X Cop B + Y Sin B) + i(Y Coo B-X bin B)

- R Sin (e + o) + iR Cos (8 + 8) & A + iB

Therefore, the numeratcr of equation (1) is:

[R Sin (B + 8) + jwjr Sin v1 + li Cos (e + 8) + IWrI Cos y] C + iD

II7



The denominator of equation (1) may be expressed in terms of R,
8, 8, W and E as follows ?

Ze-18  r (A+ iB)(U r - iV [(UrA+V B) + i(UrB -VEA
4E2  4E 2  4E2

- -- +B (u , B- VA) - G - i

4E 2 4E2G i

where:

A - RSin ( +)

B R Cos (8 + )

c A A+U r - R Sin (8+8) + iWrI Sin y

D "Bs + v -R Co. (8 + 8) + I'Wrl Coo y

UrA + VrB 4E2 - IWrI R Cos ( + 8)]
i= - 4 E 2  4 E 2

G - U r A Wr - 8 )]

4E2  2

rW I - ( r
2  + Vr2]

1

SM" Tan-i r/V)-Tn (r/v)

1(U

4-S

1 .8
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Employing the above definitions, equation (1) may be written as:

W U + v C + i0 (GC -FD) + i(GD + FC)
G -iF G 2 + F2

with:

u GC FD and v GD + FC
G+ 2 2 2G2 + F2 G + F

Evaluating GC - FD, CD + FC, and G2 + F2 we obtain:

{R2 + w R Sin [2y (6 + 0)]l

GC - FD - R Sin (6 + 0) + U - UR 2R

4E

GD + FC - R Cos (8 + $) + V - E R2 + 1W1 2R Cos [2y (+

21W IR Cos [j - (8 + )] 1WI2R2

G2 + F2  1 - +

4E2  (4E 2

Therefore, the closed form solution to the stereoranhic trans-
formation equation is:

fU R2 + IWrI2 R Sin [2y - (6 + 8)]
R Sin (e + ) + Ur - 2

1WIR Coo [y - (8 + 0)] WrR2 2

4E2  (4E5J

(4)

r r2+w1 2 R Cos (2y -(e + )].-_ ::: : R Cos (8 + 0) + Vr - V

Ro +)V r 4E2

2WR Cos - (0 + )] I R 1
2

-::i1 -+ 
]2

,I4E 2  4E2

9



Because of the computational difficulties associated with cal-
culating aircraft locations via these expressions for each radar
datum, an approximation that combines suitable accuracy with minimal
processing requirements is desirable.

APPROXIMATE TRANSFORMATION EQUATION

Equation (1), which for convenience is reiterated below, projects
aircraft onto a tangent plane centered at the common coordinate origin.

z +W
r (5)

zw
1 r

4E
2

where:

'I~ZI -zei

Expanding equation (5) yields:

W (z + W)  1i - (Z + W) + 2
4E n-1 4E

n(i 1 4E2 +z4E2+

!r rI
-w + iwV (W (Z) r z' +E (r) (Z6)

r r n-i (4E 2 )" + -l (4E 2)~ (6

2 c nl a (Z)In~
I WrI 2

2 3E ~ 'n--iZ + (W) (zr~
r 4E n-O (4E2)n  n-0 (4E2)n

co n n+1E (Wr) (Z)

n-O (4E)

10
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Let 6 and y be the azimuths of Z and W. respectively. Positive
values of 8 are measured clockwise from true north at the radar site
and in the radar plane. Positive values of y are measured clockwise
in the common coordinate plane relative to true north at the origin
of the W plane. Positive values of the rotation angle 8, which is
derived in Appendix A and presented in equation (2), are measured
counterclockwise from east at the radar site and in the radar plane.
In order that 8, y and a may properly be combined, it is necessary
to describe 6 and y in the same coordinate system as that in which 8
is measured. The angles corresponding to 6 and y in a system where
positive angles are measured counterclockwise from east are [(w/2)-6]
.and [(/2)-yj respectively. Therefore, we may write:

(W)n . iwIn e-in[(w/2) - "i
r r

(z n+l M (Ze-i8 )n+l. - lzie'( '/2 - -$

- IZn+ l eil(n+l) [(0/2) - ( + w - IZIn+
1 ei(n+l)[(/2) -( w2

where:

6 = (6+8)

From equation (6) and employing the above definitions, W may be
written as:

I W + K I 'n r Zi+l e-in[(w/2) - yJ ei(n+l) [(n/2) -

r-n-0 (4E2 ) n

A rn IZIn+
lr: -W Kei[(O'/2) -{e' + n(O' - )1]

n-0 (4E)

.r +K .2 n Sin [(8+$)+n(e6-y)1 + I coo [(e+o)4n(B+0-Y)).n- (4E)

-. 11



I.

Therefore, the components uf W are:

IWrflIZ n+l
U U + K 2 Sin [(6 + 8) + n (8 +8 - y)]

n-O (4E)

(7)

V V +K 2 Cos [(8 + 8) + n (8 + B -y)]
n-O (4E2)n

where:

K 1 + 4
2

Approximations to U and V may be obtained by terminating this series
solution to equation (1) after an appropriate number of terms.

First Order Approximation

The first order approximation to equation (1) is obtained by
taking the first term of equation (7) as follows:

U - Ur + K IZI Sin (8 + 0) - Ur + K R Sin (8 + 8)
(8)

V - V + K IZi Cos (6 + 8) - V + KR Cos (e + B)
r r

The error in this approximation to equation (1) is on the order
of the first term neglected. Values for the first term neglected,
namely KIW.9R 214E2 , are presented in Figure 2 for ground ranges from
25 to 200 miles and for lWr from 0 to 550 miles.

Figure 2 shows the trausformation errors associated with a first
order approximation to equation (1). These errors exceed 0.4 miles at
large values of R and JWI and approach 0.25 miles at intermediate
values of R and IWrl. T e composite projection error is the sum of
the transformation error as shown in Figure 2 and the conversion error

t as shown in Reference 3.

12
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When aircraft height information is available, the upper limit
on the conversion error is expected to be 0.1 miles. This result has
been obtained by consideration of Figure 6 of Reference 3. Assuming
a maximum distance between a radar site and the projection center of
275 miles, the maxium transformation error from Figure 2 herein is
anticipated to be 0.25 miles using a first order approximation. The
composite maximum error is 0.35 miles, which is deemed unacceptable.
Consequently, when aircraft height information is available, a higher
order approximation to equation (1) that will essentially decrease
the transformation error to zero as will be shown hereafter, is
required.

From Figure 12 of Reference 3, it %s noted that errors in excess
of one mile occur in converting slant range to ground range when air-
craft height data is unavailable. he fundamental remedy to this
problem is to obtain height infcrmation on the aircraft and thereby
diminish the relatively large conversion error rather than attempting
to decrease a first order transformation error that may at most equal
0.25 miles. Therefore, when aircraft height information is unavail-
able, a first order approximation to equation (1) is acceptable.

Second Order Approximation

The second order approximation to equation (1) is obtained by
taking the first two terms of equation (7) as follows:

U - U + K R Sin (e + 1) + 2 WI 2(8 + ) - y]

4E2

(9)

V + K R Cos (2 + )) + ... j
.V 4E2

The error in this approximation is on the order of the third
term Qfthe knfinite series. Values for the third term, namely
KIWrILR/16E are presented in Figure 3 for ground ranges from 75 to
200 miles and for 1W I from 0 to 550 miles. Examination of Figure 3
shows that the seconi order approximation to equation (1) essentially

A yields Identical results to the closed form solution to the stereo-
graphic transformation equation.

14
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For programming convenience, equations (9) may be further sim-
plified by a numerical analysis of the second order range term. When
height data is available a suitable expression for the ground range R,
which is esrived in equation (8) of Reference 3, is given by:

[S (H-h)2]
R - 2

1+-
E

where:1 S is the measured slant range of the aircraft.

H is the elevation of the aircraft above seu level.

h is the elevation of the radar above sea level.

E is the radius of a spherical earth.

Substituting this result into the U component portion of equation (9)
yields:

11-1U+ K "-(H-h)] Sin (6+0) + 2I(urh 2  S. F2(0+0)
I2 2+ 2 2 }

+ (1-+) 4E

Calculating the maximum magnitude of t~e {1W _ISin [2(e+6) - y]}/4E2)
term, we obtain the result 1.056 x 10 ehen Wjrl equals 500 miles.
This multiplier of the R term is miniscule; consequently, the
denominator of the R2 term may be changed to (1 + 2/E) while retain-
ing an accuracy of better than 3.1 x 10-4 -iles for values of R,
through 225 miles and for values of Iw.1 through 500 miles.

Rewriting equations (9) as suggested, we obtain a revised approx-
imation to equation (1) that retains the accuracy of equations (9)
while simplifying the formulation and processing requirements. The
simplified second order approximation is:

U + T [S2 -(H-h) 2 ] Sin (0+) + - Jerj Sin 2(e+f)1 =4K. 2
4E 2

(9a)
2_~r 2o [2(2_6+8)

VsV+ T S(h)?1 Cos (0+-) + [S(Hh) wr 2

64E

16



where: I l2

T 1- 4?
I 2

T is a site dependent constant and may be precalculated and stored as
an adaptation parameter.

17
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SECTION III

DISTORTION INDUCED BY PROJECTION

INTRODUCT ION

The earth is not a sphere but is an ellipsoid that is approxi-
mately 23 miles greater in equatorial than polar diameter. This fact
has been deliberately ignored until this section of the report as it
appeared wiser to initially consider a spherical earth and later to
consider the implications of the earth's ellipticity. A topic that
must now be addressed is the value of an earth's radius that should
be used in any of the equations which are dependent upon the earth's
size and shape. A related topic is the distortion or error that is
introduced by the entire mappitg process.

Any projection of an ellipsoid onto a plane distorts either dis-
tances, angles or areas, it being impossible to simultaneously pre-

serve all of these parameters. Furthermore, no projection of an
ellipsoid onto a plane can simultaneously preserve both angles and
areas. The stereographic projection preserves angles but distorts
distances.

This section of the report will address the manner in which the
earth's ellipticity must be taken into account. Additionally, the
magnitude of the distortion induced by the projection of an ellipsoid
onto a plane will be discussed. Considerations relative to the choice
of an earth's radius in the transformation equations will be discussed.
The effect of the choice of an earth's radius upon the overall distor-
tion associated with stereographic projection will be quantitatively
presented.

By way of introduction to these topics, the stereographic pro-
jection must be considered in greater detail.

STEREOGRAPHIC PROJECTION

The process of stereographically projecting points onto a plane
is accomplished in what may be considered as two distinct steps.
The surface of the earth is approximated by the surface of an ellip-
sold, which is obtained by rotating an ellipse about its minor axis.

The first step maps points on or above a designated point on the

ellipsoid onto a sphere which will be called the conformal sphere.
The s cond step maps points on the conformal sphere onto a plane
tangent to the conformal sphere.

18



The mapping of points on or above a designated location on :he
ellipsoid onto a sphere is accomplished by the following relations
as indicated on page 34 of Reference 4:

Tan + Qt T an[ ~ 2)] SnU /2(10)
(4 [2i;+e Sin L

4
where:

L,X are the latitude and longitude of the point on the
ellipsoid.

#,X are the latitude and longitude of the corresponding
point projected onto the sphere. This latitude is
defined as the conformal latitude.

£ - .08199189 is the eccentricity of the earth.

Therefore, the equations for mapping an ellipsoid onto a conformal
sphere and for stereographically mapping the conformal sphere onto a
plane are the same as those that have been presented for a spherical
earth except that the conformal latitude * must be used in place of
the geographic latitude L. For computational convenience, the con-
formal latitude * may be obtained from the geographic lrtitude L by
a series approximation to equation (10).

As noted on page 34 of Reference 4, the mapping from the ellip-
soid to the sphere is conformal. The mapping from the sphere to the
plane is also conformal. Each step preserves angles; hence, the
resultant stereographic projection is a conformal representation of
the earth ellipsoid on a plane.

DISTORTION ANTD EARTH'S RADIUS

The surface of an ellipsoid cannot be molded into a sphere with-
out some distortion or error. Similarly, the surface of an appropri-
ately chosen sphere cannot be spread out flat without some distortion.
In general, arc lengths that are projected onto a planar surface are
stretched as the distance between the point of tangency and the point
being projected increases. The mgnitude of the stretching is non-
linear. Terefore, groups of positional reports frca the same air-
craft exhibit distortions when projected on a plane. Data from a con-
stant speed aircraft, that is constrained to move at a constant altitude
above the earth's surface, portray apparent accelerations when projected
onto a plane.
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Intuitively, it appears evident that the distortions described

above can be minimized by a judicious choice of the earth's radius.

The following paragraphs will show quantitative relationships between
the choice of an earth's radius and the resultant distortion for the
mapping from the ellipsoid to the conformal sphere and for the pro-
jection of the conformal sphere onto a plane.

Mapping from Ellipsaid to Sphere

The scale factor associated with the mapping of points from an

ellipsoid onto a sphere is defined as the ratio of the arc length
along the surface of the sphere to the corresponding arc length along

the surface of the ellipsoid. A scale factor of unity indicates that

_ distances are completely preserved and that there is no distortion in
the mapping process. From page 86 of Reference 5, the scale factor
k, associated with the projection of the ellipsoid onto the conformal

sphere is:

k dSl E Cos 
(

ds N Cos L2

where:

k 1 is the scale factor.

d I  is the are length along the surface of the conformal

sphere.

ds2  is the arc length along the surface of the ellipsoid.

E is the radius of the conformal sphere.

L is the geographic latitude. This is the angle which
a normal to the surface of an ellipsoid makes with
the equatorial plane as shown in Figure 4.

* is the conformal latitude of the point whose geo-

graphic latitude is L.

N is the distance NP in Figure 4 where a normal to the

ellipsoid at point M has been drawn until it intersects

, the minor axis at P. The normal N is mathematically

expressed as Eq (1 - E2 Sin2 L) -" where Eq - 3444.054
miles is the earth's equatorial radius and where C2 -

.00672267 is the earth's eccentricity squared.
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NORMAL TO THE ELLIPSOID

Equation (11) expresses the scale factor k, in terms of the
earth's radius at the equator, the earth's eccentricity, the geo-
graphic latitude and the radius of the confornal sphere. Therefore,
we may set the scale factor kI equal to unity at a designated latitude

to the relationship:and snlve for the resultant radius of the conformal sphere according

Con *E N Co. L (12)

Equation (12) determines the r4dius of the conformal sphere
that will result In a unity scale factor at the latitude that is
used in the computation. Table 1 shows the radii of the conformal
spheres that result from solving equation (12) for latitudes L of 0,
20 and 40 degrees. The coaformal latitudes * that co-respond to
theue geographic latitudes are also shown.
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Table I

Earth Radius Versus Latitude (Ellipsoid To Sphere)

Geographc Latitude Conformal Latitude Earth Radius &Mi

0.0 0.00 3444.05

t 20.0 19.88 3442.71

40.0 39.81 3439.29

Table I shows the radii of the conformal spheres that result
from solving equation (12) using the indicated geographic latitudes.
When the mapping of the ellipsoid onto the sphere is centered at
the equator, the optimum radius of the conformal sphere is the earth's
equatorial radius of 3444.05 miles. When the mapping is centered at
more northerly latitudes, the optimum earth radii decrease as shown
in the table.

Let us now determine the scale factors or magnifications that
result from solving equation (11) using each of the earth radii con-
taned in Table I over a designated set of latitudes. It is evident
that the radius of the conformal sphere, which is calculated based
upon a particular latitude, will result in magnifications closest
to unity over a geographical area that is centered at the same
latitude. To quantify this judgment, Table II shows tb solutions
to equation (11) for latitudes between 36 and 44 degrees when E
assumes each of the three values shown in Table I.

Table II

Magnification Values

Latitude/Corresponding Radius of Conformal Sphere
Latitude .0/3444.05 20.0/3442.71 4013439.29

36 1.00116 1.00077 0.99977

38 1.00127 1.00088 0.99989

40 1.00138 1.00099 1.000001.00012

42 1.00150 1.00111 1.00012

44 1.00162 1.00123 1.00023
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Each column of Table II shows the magnification value that re-
sults from solving equation (11) using the indicated value of the
radius of the conformal sphere while varying the latitude from 36
to 44 degrees. When the radius of the conformal sphere is calculated
based upon unity magnification at latitudes of either 0 or 20 degrees,
distances on the ellipsoid over all latitudes from 36 to 44 degrees
are stretched when projected onto the respective spheres. When the
radius of the conformal sphere in based upon unity magnification at
a latitude of 40 degrees, distances on thE ellipsoid at latitudes
above 40 degrees are elongated whereas distances below a latitude
of 40 degrees are contracted when projected onto the sphere. As
expected, the magnitudes of the elongations and contractions are
minuscule. Figure 5 depicts the situation when the earth's radius
is chosen based upon the latitudinal center of the geographical area
of interest, designated L. As Indicated in Table II, this radius
of the conformal sphere is optimum in that it results in magnifica-
tions closest to unity over the area of interest.

Mapping from Ellipsoid to Plane

The scale factor k2 that is associated with the process of map-
ping points on the conformal sphere onto points on the common coordi-
nate plane is from page 41 of Reference 4:

22 1 + Sin $ Sino + Cos 4 Cos 0o Cos (-o) (13)

where:

OX are the conformal latitude and longitude of the
point to be projected.

*0,A0  are the conformal latitude and longitude of the
origin of the'common coordinate plane. This
origin will be referred to as the projection
center,

From equation (B-1) of Appendix B, it will be noted that the de-
nominator of equation (13) may be written as:

I + Sin Sino + Cos Cos Cos (- )- 1 + Cos D
0 0 0

where:

D is the angle that subtends the great circle arc from ($,A)
to (oX 0).
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The magnification k2 equals umity at the projection center and
increases as the distance from the projection center increases. Con-
tours of equal scale magnification are concentric circles about the
projection center. Figure 6 shows contours of equal magnification for
several values of k2 where the horizontal azis is a range of longitudes
between -9 and +3 degrees and where the vertical axis is a range of
latitudes between 36 and 44 degrees. From Figure 6, it will be
observed that the scale is unity at the projection center, that the
scale increases with the distance from the projection center and that
contours of equivalent magnification are symmetric about the vertical
axis. The projection center L0 ,X0 in Figure 6 is 400, -30.

The total scale factor associated with the projection of the
ellipse onto the plane is the product of the scale factors associated
with the two steps of the mapping process. Therefore, the total
magnification designated kt is:

-2E Cos (14)kt W N Cos L [1 + Sin Sin $o + Cos 4 Cos 4o Cos (X- 0)]

Table II has presented the magnification values associated with
the projection of the ellipsoid onto conformal spheres with varying
radii. Figure 6 has presented contours of equal magnification for
the mapping from the conformal sphere onto the plane. Equation (14)
provides a method for combining the magnifications associated with
the two steps of the mapping process over a designated range of
latitudes and longitudes for a specified radius of the conformal
sphere.

For comparative purposes equation (14) has been evaluated using
as the radius of the conformal sphere:

(a) The earth's equatorial radius

(b) The earth radius that is optimized for the mapping
from the ellipsoid to the sphere when the mapping is
latitudinally centered at 40 degrees.

Using the earth's equatorial radius as the radius of the conformal
sphere, Figure 7 shove contours of equal magnification for the same
range of latitudes and longitudes that wre used in Figure 6. Examina-
tion of Figure 7 shows that contours of equal mangification remain

symmetric about the vertical axis. Due to use of an earth's radius
that is better suited to a projection centered at the equator than to
a mapping centered at a latitude of 40 degrees, the contours of equal
magnification are larger than is necessary. The magnification is

- 1.00138 at the projection center and increases away from the projec-
tion center.
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Figure 8 shows contours of equal magnification using the earth's
radius that is optimized for the mapping from the ellipsoid to the
sphere when the mapping is latitudinally centered at 40 degrees.
With cursory consideration, this choice of an earth's radius appears
to minimize distance distortions over the geographical area of interest
since k is unity at the latitudinal center of the projection and
since k2 is completely determined for any point (L,X) given the pro-
jection center (Lo, xt).

00

The magnification contours of Figure 8 are analogous to those
of Figure 6 except that the contours of Figure 8 are no longer
symmetric about the horizontal axis through the projection center;
these contours are flattened to the north and elongated to the south
of the projection center. Like Figure 6, the magnification is unity
at the projectior center, increases away from the center, and is
symmetric about the vertical axis.

Through this point in the discussion, Figure 6 has presented
contours of equal magnification associated with the mapping from the
conformal sphere to the plane. These contours are independent of
the choice of an earth radius. Figures 7 and 8 have presented con-
tours of equal magnification based upon the overall projection from
the ellipsoid to the plane. These contours are dependent upon the
choice of an earth's radius and have been depicted for radii that
minimize the distcrtion associated with the mapping from the ellip-
soid to the conformal sphere over geographical areas that are
lat iudinally centered at 0 and 40 degrees respectively.

A common feature of Figures 6 through 8 is that the magnifica-
tion is greater than or equal to unity at the projection center and
increases as the distance from the projection center increases.
What would appear more desirable, as it would tend to decrease the
registration error between observations of the same aircraft by
different radars, is a unity magnification that would occur approxi-
mately midway between the projection center and the extremity of
radar coverage. This would effect magnifications of less than
unity at the projection center, a contour of unity magnification
within the geographic area of coverage and a magnification contour
that exceeds unity at the extremity of radar coverage.

To accomplish the desired result equation (14), which for con-
venience is reiterated below, will be considered when setting the
magnification k to unity at a particular value of (LA) and for a
particular projiction center (L ,Xo).

2E Coskt (15)
t N COS L [I + Sin* Sin4 + Cosn COS* COS oA-x i(5

0 0 0
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Solving equation (15) for the resultant radius of the conformal sphere
E, we obtain:

N Cos L [1 + Sin Sino + Cos + Cos Cos (X-X0)

2 Cos $ (16)

Equation (16) determines the radius of the conformal sphere that will
result in unity magnification at the point (Li) for the particular
projection center (L ,X ). Table III snws the radii of conformal
spheres that result ?rom solving equeul'Ion (16) for several values
of (Li) when the projection center (L ,i ) is chosen as (40% -3*).
The initial value of (LA), is of no prachcal importance since the
projection center is approximately 2400 miles away from the point
(0, -7'). Nevertheless, it has been included in Table III in order
to better understand the implications of equation (16).

Table III

Radius of Conformal Sphere (Ellipsoid To Plane)

LA Earth Radius

0,-7 3041.62

42,-7 3435.45

38, 0 3437.21

40, -3 3439.29

Comparing the earth radii in Table III to those in Table I, we
note that the earth radius corresponding to (0,-7) is approximately
400 miles less than any of the other earth radii. When the points
(LA) are proximate to the projection center, the resultant earth
radii are approximately equal to the earth radius that was presented
in Table I and which was opimized for the mapping from the ellipse
to the sphere. When the point (LA) equals the coordinates of the
projection center, the resultant earth radius equals the earth radius

N. of Table I which was optimized for the mapping from the ellipse to
the sphere.

Figure 9 shows the contours of equal magnification that result
from solving equation (15) while requiring that a unity magnification
be obtained at the point 0', -7. The appropriate earth radius that& 4was used in obtaining th. contours is 3041.62 miles and the projection
center is 40, -3'. The geographical area over which the contours
are presented is identical to that of the previous figures.
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Examination of Figure 9 shows that the scale equals 0.99437 at
the projection center and increases with the distance from the center.
If the contours were plotted over an extended geographical area, the
magnification would eventually become unity at the point 00, -7*.

Figure 10 presents contours of equal magnification when LA
equals 42*, -7* in equation (16). Figure 11 presents similar contours
when L,1 equals 38, 0. Finally, Figure 12 presents magnification
contours for L,X equal to the projection center, namely LX equals
40, -30. Figure 12 is identical to Figure 6.

Figures 9 through 12 show that the magnification contours remain'symmetric about the vertical axis through the specified projection
center. Therefore, to minimize the distortion associated with the
mapping from the conformal sphere to the comon coordinate plane,
the projection center should be located proximate to the center of
the geographical area of interest.

Figures 9 through 12 also show that a unity magnification contour
may be obtained through a designated location within the geographical
area of interest by simply solving equation (16) for the appropriate
radius of the conformal sphere. Using the resultant radius as the
value of E in the transformation equations will effect the desired
result. It is suggested that the unity magnification contour should
be located approximately midway between the projection center and
the maximum extent of radar coverage in order to decrease the registra-
tion error between observations of the same aircraft by different
radars.

EARTH RADIUS AND COORDINATE CONVERSION

Having obtained the radius of the conformal sphere that results
in a unity magnification along a particular elliptical contour, it
is necessary to determine whether this radius is suitable for use in
the stereographic coordinate conversion algorithms. Intuitively one
could argue that the earth's radius to be used in the coordinate
conversion algorithm should be obtained from equation (16) based upon
the coordinates of the radar site location (LA) and the origin of the
common coordinate plane (L A1 ). Such an approach would result in a
unique earth radius being RsSciated with each radar site.

To ascertain the effect of a unique earth radius for each radar
site, the extent of the variation in the earth's radius over the
geographical area described by 360 < L < 440 and -9o < A <3 was
determined. Equation (16) -was solved for varying (LX) within the
geographical area with the origin of the coon coordinate plane
located at L - 400 and A - -3. The resultant minimum and maximum

0 0
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values of the earth radii were approximately 3428 and 3440 miles
respectively. To determine the impact of such a variation in the
earth'. radius, the stereographic coordinatc conversion algorithm
and the impact of the earth's radius therein will be considered.

Stereographic coordinate conversion consists of using slant
range and azimuth data, the height of an aircraft above sea level
and the elevation of the radar above sea level to obtain the stereo-
graphic projection of an aircraft's location onto the radar coordinate
plane. From page 31 of Reference 3, a coordinate conversion equation
which combines suitable accuracy with minimal processing requirements
is:

E- [ 2 __ (H-h) 2] 1 + 2 (17)

where.

R is the stereographic ground range in the radar plane.

S is the measured slant range.

A H is the measured height of the aircraft above sea level.

h is the elevation of the site above sea level.

E is the radius of the earth.

To determine the variation in the ground range R that results

from using site dependent earth radii, equation (17) has been evaluated
for several values of the numerator while E assumes the minimum and
maximum values for our hypothetical area of coverage. Table IV shows
the impact of using the mini.ium and maximum earth radii on the com-
putation of ground range.

Tabla IV

Ground Range Versus Earth Radius

R based on:

Numerator (Mi) E -3428 3440

225 224.8688 224.8693

100 99.9417 99.9419

30 29.9825 29.9826
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Examination of Table IV shows that there in no essential differ-
ence in the calculated ground range due to the varying earth radii.
Therefore, the earth radius as derived frou equation (16) and vhich
yields a unity magnification contour at a location approximately
midway between the projection center and the maximum extent of radar
coverage should also be used i the coordinate conversion algorithm.
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SECTION IV

SUIBIARY OF STEREOGRAPHIC PROJECTION ALGORITHM

INTRODUCTION

This section of the report reiterates the more important results
that have been indicated herein. Additionally, a summary of the
stereographic conversion and transformation equations is presented.
The conversion algorithms have been developed in Reference 3 and the
transformation equations have been derived herein.

ORIGIN OF COKMON COORDINATE PLANE

The latitude and longitude of the origin of the comnon coordi-
nate plane are stored parameters that are required for stereographic
projection of radar data. This origin should be chosen proximate to
the center of the geographical area of interest to equalize the map-
ping distortion about this location and to minimize the overall
distortion.

CHOICE OF EARTH'S RADIUS

Stereographic projection requires the mapping of points on or
above a designated location on the earth ellipsoid onto a sphere
which is called the conformal sphere. The radius of this sphere is

a stored parameter that is required by joth the stereographic trans-
formation and conversion algorithms.

Having selected the origin of the common coordinate plane as
described above and having selected a particular latitude and longi-
tude through which a unity magnification contour is desired, the
radius of the conformal sphere should be calculated from equation (18).

* £ It is recommended that the unity r.gnification contour should be
located approximately midway between the origin of the common coordi-
nate plane and the maximal extent of the radar coverage in order toI decrease the registration error between observations of the same air-

-t craft by different radars. The radius of the conformal sphere that
is obtained from equation (18) should be used in both the stereo-
graphic conversion and transformation algorithms.
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N Cos L [1 + Sin * Sin 0 + Coo # Cono Cos (X-A )]
2 0 (18)

where:

E is the radius of the conformal sphere.

N is Eq(l-c2Sin2L)'4 where Eq - 3444.054 miles is
the earth's equatorial radius and where e2 _ .00672267
is the earth's eccentricity squared.

L is the geographic latitude of a designated loca-
tion. This is the angle which a normal to the
surface of an ellipsoid makes with the equatorial
plane as shown in Figure 4.

4,A is the conformal latitude and longitude of a
point through which the unity magnification con-
tour is desired. * is obtained via equation (19).

o, X 0 is the conformal latitude and longitude of the
origin of the common coordinate plane. *0 is
obtained via equation (19).

CONFORMAL AND GEOGRAPHIC LATITUDE

The conformal latitude may be obtained from the geographic
latitude according to the relationship:

c/2
Tan 4(~ +() 2 Tan 4 [ + £ Si Lj (19)
T.,[(i) + (0-1" ' [Q-) + [1I] [".+° .,.,e "Sin ' ""

where:

is the conformal latitude of a point, the geographic
latitude of which is L.

-. .08199189 is the earth's eccentricity.

For computational convenience, the conformal latitude * may be obtained
from the geographic latitude L by a series approximation to equation (19).
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VI-

STEREOGRAPHIC COORDINATE CONVERSION

Slant range, azimuth and height data should be projected into
the radar tangent plane as described in Reference 3. When height
data is available the stereographic ground range R, the distance
from the radar to the aircraft in the radar plane, should be cal-
culated as follows:

R [Si + ()2 1 (20)

When height data is unavailable, the stereographic ground range R

should be calculated according to:

R - 1.0025 S - 0.65 (21)

where:

R is the stereographic ground range.

S is the measured slant range.

H is the measured aircraft altitude above sea level.

h is the radar site elevation above sea level.

E is the radius of the conformal sphere from equation (18).

RADAR SITE COORDINATES

The rectangular coordinates of a radar site's location or any
other point on the earth's surface relative to the origin of the com-
mon coordinate plane should be calculated from equations (22). Posi-
tive values of Ur and Vr correspond to locations that are east and
north of the origin of the comon coordinate plane.
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Sin (X-0) Cos

Ur 2E + Sin $ Sin o + Cos 4 Coso Cos (X-X)
0 0 0

(22)
SSin Cos -Cos $ Sin o Cos CX-o
Vr  a2E T +Sin 0 Sino + Cos 0 Cos o Cos (X-X)

J where:

U, V are the rectangular coordinates of the point designated

by (L,X) in the comnon coordinate plane.

are the conformal latitude and longitude of the point

to be projected.

*0,A0 are the conformal latitude and longitude of the origin

of the common coordinate plane.

E is the radius of the conferiral sphere from equation (18).

Latitudes north of the equator are defined as piu.ative whereas
latitudes south of the equator are negative. Longitudes e,;, oJ the
prime meridian are defined as positive and those west of the prime
meridian are negative.

ANGULAR ADJUSTMENT OF RADAR DATA

Radar data, which are measured relative to true north at the
radar site location, should be adjusted so that the azimuth is rela-
tive to north at the origin of the common coordinate system. The
angular adjustment 0 is defined as follows:

- (Sin * + Sin 0) Sin (;'°-))
-Tan-  Cos %Cos o + (I + Sin 0 Sin o Cos -)(23)
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, A are the conformal latitude and longitude of the
location of the radar site.

Aoxo are the conformal latitude and longitude of theorigin of the con coordinate plane.

An azimuth datum 6, which is measured relative to true north at
the radar site, should be adjusted to true north at the origin of the
commn coordinate system as follows:

RO

B = 6+8

TRANSFORMATION FROM RADAR TO COWON COORDINATES

The transformation from the radar coordinate plane to the comaon
coordinate plane should be accomplished by an approximation to the
stereographic transformation equation.

When aircraft height information is available, the rectangular
coordinates of an aircraft with respect to the common coordinate
origin should be calculated as follows:

2IW ISin [2(0+0) - ]I
U - Ur + K R Sin (0+4) + 14E2

(24)

V - V + K R Cos (8+8) + R
2 1W ICon 2(690) - y]

4E2

where:

U ,V are the rectangular coordinates of the radar
r r

site in the common coordinate plane.

R is the stereographic ground range in the radar
plane from equation (20),
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K - 1+ IrI2/4E2

IWrI [Ur2 + vr2

y - Tan- 1 (U/V r )

Equations (24) may be calculated by the following expressions which

preserve computational accuracy while minlaizing the processing
requirements.

IA 21 W risin [2(0W-) - TI
U M + T I A Sin (60)+ 4E2

A2 JWr I0os 12(0+B) -yl

V - Vr + T+ A Cos 0+i) + [4E 2

where:

K
1+

A - [S2 (f-h)2

When aircraft height information is unavailable, the rectangular
coordinates of an aircraft with respect to the common coordinate
origin shozld be calculated from:

U U u +KR Sin (0+ )

V V + K R Cos(0$) (26)~r

where:

R is the stereographic ground range in the radar plane from
equation (21).
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APPENDIX A

THE STKBZOGRAPEIC ThMISOPMTION EQUATION

From pages 86 and 133 of Reference 5, a point on the surface of
a spherical earth, the latitude of which is L and the longitude of
which is 1, is stereographically projected onto a plane with an origin
at a latitude of Lo and a longitude of X. by equation (A-i). The
resultant point in the plane of projection is designated by Z and its
rectangular components are X and Y.

exp [C'(T-i-t O+i )J-exp-[-(-i-or +iA)J
Z-X iY= E10 0 0 0(Ai:1 = + 2 exp tr-i +o0+i o)+ ezp 0-(t-A+ 0-) 1  (-

where:

e - Tan (v/4 + L/2)

T

e 0 Tan (w/4 + LO/2)

L - latitude of the point to be projected

Lo  latitude of the coordinate origin

A x lcngitude of the point to be projected

A - longitude of the coordinate origin

IE - radius of a spherical earth

3' Substituting A - ](T-iX), B - (-t O+i ) and C - (ro+iAo ),

.. D ," (- 1 +.x 1 ) and F (TI+iUQ, Z may be expre3sed as:

A e -A -i I _ e-2A -B
Z-2E e - e a 0J~-

z,. 2E1 2EL (A-2)

*A eC + e-A e-C C -2A. -C
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Solving equation (A-2) for exp ( -iX), we obtain

Z + 2.1L exp (T0 )
exp (2A) = exp (z-iX) - 2Ei exp (iX) - Z exp (t0 + iXo ) (A-3)

Let us now stereographically project the point (L,A) onto a

plane with an origin of (L1,X 1). The resultant point in the plane
of projection is designated by V and its rectangular coordinates
are U and V. The form of W will be identical to equation (A-i)

except that T 0 will be replaced by r 1 and Ao will be replaced by A,.
The point (LI,X) may be considered as the origin of the comma
coordinate plane and the point (Lo o ) may be regarded as the origin
of the radar plane. Rewriting equation (A-l) as suggested, W ib:

A eD -A -D (D-F) -ZA -(D+F)
W e e -- e m 2E1 e -e e

eA  F -A -2A -2F (A-4)
e e +t e 1l+ e e

Substituting from (A-3) into (A-4) and performing the requisite
manipulations, W may be expressed as:

Z exp(-TI)+2Ei exp(To-T1)-2Ei exp[i(X 1)]+Z exp[To0+i(Ao-A 1)J A
2Si Z+2Ei eXp(T )+2Ei exp[-Tl+i(Ao-Al)]-Z exp[(To-T )i( o-Al)]

Z{exp[i(Xo-XI)]+exp[-(T0 +T1 )Ji +2Eifexp(- 1 )-exp[-T0 +i(A o-X I}

1 + exp[-( 0o+T )+i(o-) ] - _L 2Eilexp(-o) -exp -TI o

=-_4 E 2

Therefore, W may be written as:

onI [(o-X)] +. (-(T 0 -. Il l €-T_ 0- 1-_o_-A

~~r [i(A0-A1)] +aspiexpC-'r 1 ) - ap - 0 ±A- 1)
-+exp [-(T- )+iU-A)] ! + +W -l+ex r-( )+- A]. 0 00 (A -5 )

-. zIeip (-o) - exp[.-..+i(X'o-fl1 (X
1- --- 21i I ol l

2 2 I+ exp --(T+I) +i(A -X)]
4E 1l 0l
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Equation (k-5) is the stereographic transformation equation.
We will now examine this equation term by term in order to express
it in a simpler form.

The fraction by which Z is multiplied in the numerator of equa-
- tion (A-5) may be written as:

exp [i(o-A1l) ] + exp [-(To+r)] (e + Cos A) + i Sin A
T Si= (A-6)

l + exp [-(To-+z) + i(Xo- 1 )] (1 + eT Cos A)+ie t SinA

where: T - -( 0 + T

A - (A - X)

eTJT an [3r2+L I+ Sin L CostL
( r2-J CosL 1 - Sin L

eT = Tan [ (w/2 - L] -Sin L, Cos L

j J

Mult iplying the numerator and denominator of (A46) by its com-
plex conjugate, and performing the necessary algebra, (A-6) may be
expressed as:

T 2Tc 2T2e + e Cos A + Cos A + i[Sin A ( )-e2)] (A-7)

1 + 2eT Cos A + e
2T

Calculating the real (R) and Imaginary (I) portions of expression
(A-7) via the above definitions of exp (T) and Rp (-r ) R and I may
be written as:

Cos L Coo L + (1 + Sin L Sin ) Cos (Ao-Al)
*Jran 0 1Cs(
S+ Sin Lo Sin L + Cos L ° Cos L, Cos (o-Xl)

(A-8)

(Sin L0 + Sin L1 ) Sin (Xo-x1

1 + Sin L, Sin LI + Con L Cos . Cos (Ao-_1
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Although tedious to verify, it may be shown that R2 -12 equals
unity. Consequently, (A-6) may be expressed in terms of its
polar coordinates as follows:

exp [-(T0 + TI)] + exp Li(\,-A1)] = [R2+i2]T e-i = e-

1 + exp [-(T + T + i(-

where (A-9)

T (Sin L0 + Sin L) Sin (A-A)

Cos L Cos h + (1 + Sin L Sin L,) Cos (A0 -Xl)

and

L 0o,A°  are the latitude and longitude of the origin of
the radar coordinate plane.

Ll A 1i are the latitude and longitude of the origin of
the common coordinate plane.

From consideration of the definition of B, it will be noted that
a positive 0 angle is measured in a counterclockwise direction from
the R axis. Having reduced (A-6) to e-i, the leftmost term
in the numerator of equation (A-5) may be expressed by Ze- lo.

The right side of the numerator of equation (A-5) is:

exp (-rI) - exp [-T + i(Ao-AlJA
I + exp [-(T° + T ) + i(Ao-A )]

22 exp(To-iA) - exp(r1-iAI).+ exp(-T1-iA1 ) - exp(-2iX1-T+iA0 )
- 22i a[ep(-iA) + exp(T +Tl1 iAo)] (1 + exp [-(T+ I) + XI

o 0 o 0

exp (ro-IAo ) -exp (T 1 -iA 1 )
2Ei 0

exp (-i) + exp (To +r -IA)

0 i A- 0- +i1p ii2Ei [ W (A-1)
2 exp [11( -iX+ T+il)] + eXP [-4 (To-io+rl+il ) ]  r
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Therefore, the rignt side of the numerator of equation (A-5) is W,

which represents the origin of the radar plane projected onto the
commn coordinate plane. The entire numerator of equation (A-5) is
(Ze-i8 + W).

The fraction by which (-Z/40?) is multiplied in the denominator
of equation (A-5) is:

exp (-r o - exp [-T I+i( X- i) exp (-To 0 exp [-) I(Xo-X 12E1 2Ei (1 + eXp [-(Cro+T1 ) + i(.Ao-X1) ]  exp [i(Xo1-A1) + exp [-(T0 +T1)

*1 exp [i(Xo-X] + exp [-(To+)

1+ exp [-(To+T + i(Xo-;k

which from expression (A-9) is:

] I exp (-T)- exp [-TI + i( 0 -kl)] il!2t , e• (A-11)
exp [i(x o-A 1 )] +U exp [-(TO+Ti)]J

The term within the parenthesis may be expressed as:

exp [t i(2X - 1.)] + exp (-T 1+iX) - exp TrI +i) - exp (-T0 +iA1 )-2gt,

[exp (To0+T 1+iA o ) + exp (1)] { exp [(,-X 1I)] + exp [-(To+4r I)}

eXp (T + 0)-XP (T + i)

-- 2Ei 0r 1  1

exp (T + r + IA)+ exp (iX 1 )
0 0

exp 1 (o+i'.o-X- )] - ep [-Ji(T 0 +iXo-T 1 -iAl)],-2Ei r (M 12)

exp (h(r 0 +IAo.ro-iT1 )] + exp [-J(o-0
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where W CUr -iVr is the complex conjugate of Mr . Therefore, 'he
fractio by which (-Z/4E2 ) is multiplied in the denominator of equa-
tion (A-5) is W e" .

Substituting the results of expressions (A-9) through (A-12) into

equation (A-5) yields:

Ze-  + W
W e r (A-13)

1 - Z W e "
r

4E
2
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I APPENDIX B

PROJECTING THE EARTH'S SURFACE ONTO A PLANE

U This Appendix derives for a spherical earth the equations which
stereographically project points on the surface of the earth onto a
plane of rectangular coordinates. Figure B-1 depicts the geometry
for a spherical triangle with the origin of the coordinates at lati-
tude Lo and longitude XO . The point to be projected has coordinates-- 4 L A.

In Figure B-i, N and E are the directions of north and east
respectively in the plane of projection. The line OP' is the azc
OP projected into the plane. The angle y in the plane corresponds
to the sphe-ical angle ZOP. 0 is the angle between the radii drawn
from the ea:th's center to the origin of the coordinate system and
to the point to be projected.

From the law of cosines for the spherical triangle OPZ, we obtain:

Cos PO - Cos PZ Cos OZ + Sin PZ Sin OZ Cos PZO
(B-i)

Cos o - Sin L Sin Lo + Cos L Cos L Cos (A-XA)

From spherical triginometry, the relationship between two angles
and three sides is:

Sin PO Cos ZOP - Cos PZ Sin ZO - Cos ZO Sin PZ Cos PZO
(B-2)

Sin 0 Cosy - Sin L Cos L - Sin L0 Cos L Cos (X-X)

From the law of sines:

Sin PO Sin PZ Sin - Cos L
. Sin PZO Sin ZOP - Sin (X-A) Sin y

Therefore, Sin 0 Sin y - Sin (X-A0 ) Cos L (B-3)

From equation (2) of Reference 3, the stereographic ground range

designated ?WN herein, may be 3btained from the relationship:

,WI - 2E Tan (0/2) -2 Sin 0

1 + Cos 0
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Figure B-I PROJECTINC2 E.-lR"Ii ONTO PLANE
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The Ur,V r components of the projected point Wr are obtained from:

U = IW'J Sin y - 2E Sin 0 sin y
r  r 1 + Con 0

(B-4)

Vr IWl Cos y - 2E Sin 0 Coey
r  1 + Con 0

Substituting from equations (B-1), (B-2), and (B-3) into (B-4), we
obtain:

2E Sin (X-Xo ) Con L
r 1 + Sin L Sin L +Coo L Cos L Con (X- )

(B-5)

2E[Sin L Con L - Sin L Cos L Cos (X-Xo)]
V Y l Sin L Sin L+ Cos L Cos L Cos (X-Ao )

where:

L,X are the latitude and longitude of the point to
be projected onto the coordinate plane.

Lo,X°  are the latitude and longitude of the originof the plane of rectangular coordinates.

Ur.Vr are the rectangular coordinates of the point
LX in the plane of projection.

'I
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